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Abstract — A new efficient mapping technique between the 
finite element method (FEM) solutions on two sets of meshes, 
one coarse and one fine, are proposed to reduce the 
computation time in the study of optimal design problems. In 
the optimization process of the proposed algorithm, the 
equation is required to be solved only on the coarse mesh and 
the more accurate solution on the fine mesh is obtained by 
mapping. The proposed mapping technique is verified by 
solving TEAM workshop problem No. 25 and the computation 
time of the proposed method is only 35.5% of that required by 
the general methods.   

I. INTRODUCTION 

Finite element method (FEM) is widely used in 
electromagnetic device analysis and design [1]. However, it 
takes one or two hours for one design using FEM and most 
optimization methods have to execute the object function 
many thousands times before approaching the optimal 
solution [2]. In some cases, the computation time of FEM 
can be reduced by reducing of the number of elements in the 
mesh at the expense of accuracy.  

In optimization process, a change in the shape of the 
device being optimized requires different FEM solutions. It 
is also noted that all the FEM solutions in the optimization 
process have some common characteristics because it shares 
similar computation domain, the same boundary condition, 
the same distribution of materials, even the same excitations 
in most cases. Moreover, the FEM solution consists of two 
parts: one part is the main change, which is the low 
frequency part in the FEM solution, and another part is the 
vibrations on the previous part, which is the high frequency 
part in the FEM solution. The low frequency part is very 
dependent on the optimization parameters, while the high 
frequency attached on the low frequency part is not. The 
low frequency part of the solution may be obtained with 
large intervals on the computational domain and the high 
frequency part should be captured on small intervals.  

In the proposed method, two set of meshes υH and υh 
(with mesh size h << H) are constructed for the FEM 
discretization at each optimization step. Usually the fine 
mesh υh can be chosen as the adaptive refinement on the 
coarse mesh υH. The difference in the solutions between the 
fine and coarse meshes are the high frequency part. Because 
the high frequency part is less dependent on optimization 
parameters, a mapping can be constructed to link the high 
frequency part and the low frequency part which is the 
solution on the coarse mesh. The mapping can be setup by 
solutions of tens of FEM computation on the coarse and fine 
meshes with the optimization parameters randomly chosen. 

The solution obtained after mapping is expected to be 
reasonably accurate as it is the FEM solution on the fine 
mesh. Since dim(υH)<< dim(υh), the effort for solving the 
problem on the coarse mesh is relatively simple. In other 
words, the mapping upholds the accuracy of the FEM 
solution and at the same time reduces the computation time.   

 
Fig.1. Difference between the solution on the coarse mesh and fine mesh. 

II.  MAPPING METHOD  

The mapping method can be illustrated by a simple 
example as shown in Fig. 1. The dotted line represents the 
solution on the coarse mesh and the solid line represents the 
solution on the fine mesh. Node 2 is in the fine mesh and 
the adjacent nodes of node 2 on the coarse mesh are nodes 1 
and 3. The solution on the fine mesh on node 2 is uh, and the 
interpolation of the solution on the coarse mesh to node 2 is 
uI. The difference between uh and uI is ∆u= uh − uI. ∆u can 
be represented by the linear combination of uI, u1, u2, u1’, 
u2’ and the coordinate of node 2, x. ∆u=aui+b(u1+u2) 
+c(u1’ +u 2’) +dx, where u1’ and u2’ are the derivative of the 
solution on u1 and u2, respectively. The coefficient a, b, c, d 
can be obtained by the least square fitting on solution of the 
N-th  time on the coarse mesh and fine mesh:  

min∑ (∆ui− auIi−b(u1i+u2i)−c(u1i’ +u 2i’) −dx) 2         (1) 
where ∆ui, and uIi,u1i, u2i,u1i’,u2i’  are the i-th time solution. 
Once the coefficients are determined, the solution on the 
fine mesh can be obtained from the solution on the coarse 
mesh uh = uI+∆u = uI+ aui+b(u1+u2)+c(u1’ +u 2’)+dx . 

The representation of ∆u includes the consideration of 
the solution on the nodes itself, the solution on its adjacent 
nodes, the derivative on the element on the coarse mesh and 
the position of the nodes together, which, indeed, represents 
the high frequency part of the solution.  

The above mapping method can be extended directly to 
2-dimension (2D) and three-dimension (3D) problems. For 
each node on the fine mesh, there exists one element in the 
coarse mesh which contains it. The nodes on that element 
can be chosen as the adjacent of the node on the fine mesh. 

In the mapping method, not all of the nodes on the fine 
mesh requires mapping. Only the nodes which are related 
with the objective function calculation require mapping. 
This will reduce the number of the unknown coefficients.  
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The mapping algorithm requires a comparison between 
the N solutions of the coarse mesh and fine mesh. The i-th 
time can be stated as:  
1. Determine the shape of the devices by selecting the 

optimization parameters randomly; generate both 
coarse and fine meshes on the computation domain.  

2. Solve the equation on the coarse and fine meshes using 
FEM. 

3. Determine the set of nodes on the fine mesh {uh
1, uh

2, 
uh

3, … , uh
n}, which is related with the objective 

function calculation and at the same time obtain the 
adjacent nodes for each nodes in {uh

1, uh
2, uh

3, … , uh
n}.  

4. Interpolate the solution on the coarse mesh to the nodes 
{ uh

1, uh
2, uh

3, uh
n} by interpolation and obtain ∆ui.  

5. Store the ∆ui on the nodes {uh
1, uh

2, uh
3, … , uh

n} for the 
calculation of the coefficients a, b, c, d.  

After N times of FEM computation, the coefficient a, b, c, d 
can be calculated by the stored ∆ui to realise the mapping. 

III.  INTERPOLATION FROM COARSE MESH TO FINE MESH 

Accurate interpolation of the solution from the coarse 
mesh to the fine mesh is an important procedure of the 
proposed method. The proposed interpolation is based on 
the coarse FEM space νH.  Given the basic function on νH 

is 1{ } n
i iψ = and the solution is 1{ } n

i iu = , then if node ( , , )v x y z is in 

the fine mesh, the interpolation value on node ν is: 
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where (ξ, η, ζ) is the reference coordinates. To determine 
the reference coordinates of node ν, the coarse mesh 
element which contains it must be found according to its 
global coordinates (x, y, z). There are two procedures to 
find the element. Firstly one must determine a set of 
elements that probably contain the point according to the 
global coordinates of the node in the element. The second 
step is to solve the following nonlinear algebraic 
transformation equation by Newton iteration method on 
each element in the set: 

x = f(ξ, η, ζ), y = g(ξ, η, ζ), z = h(ξ, η, ζ)                  (3) 
where f, g, h are shape functions on the element. 

The reference coordinates (ξ, η, ζ) can be obtained in 
the set of elements. If (ξ, η, ζ) is in the defined range, the 
element that contains the node is found and the interpolation 
values on the node can be calculated by (2). 

IV.  NUMERIC EXAMPLE 

The proposed method is applied to TEAM workshop 
problem No. 25 [4]. The goal of this problem is to optimize 
the shape of a die mold to obtain the best performance of 
permanent magnets. Fig. 2(a) shows the model of the die 
mold with the electromagnet for the orientation of the 
magnetic axis of the magnetic powder. The die mold is 
described by an internal circle of radius R1 and by an 
external ellipse represented by L2, L3 and L4, as shown in Fig. 
2(b). The objective function W for the optimization problem 

is given by: ( ) ( )[ ]∑
=
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where; n is the number of specified points; Bxpi and Bypi are 
the computed values along the line e-f; Bxi and Byo are 
specified as Bxo=1.5cos(θ), Byo=1.5sin(θ) (T). 
 

                  
                    (a)                                                        (b) 
Fig. 2. (a) Die mold with electromagnet.   (b) Optimization parameters  

 

                            
                     (a)                                                       (b) 

Fig 3.  (a) Coarse mesh                             (b) Fine mesh                           
                   

Fig. 3 shows the coarse mesh with 519 nodes and the 
fine mesh with 4216 nodes on the computation domain of 
one design. Using particle swarm optimization method, the 
swarm size is set as 20 and the stop criteria is defined by 
two performance parameters ∆Bmax = max((Bp−Bo)/Bo)< 3% 
and ∆θmax = max(|θBp−θBo|) < 2o. In the mapping 
construction process, it takes about 247 seconds to do 400 
times of FEM computation on the coarse and fine meshes 
(including nonlinear iteration and derivative calculation). 
As is shown in Table I, it takes about 144 minutes to do 
7860 times FEM computation by the proposed method, 
while it takes about 418 minutes to do 5880 times FEM 
computation on the fine mesh using the conventional 
method. For 3D problems which requires much more time 
to do FEM computation, the improvement by the proposed 
method will be more significant.   

TABLE I 
COMPARISON OF THE COMPUTATION TIME  

Method Calculation FEM Times 
Time  
(s) 

Total time  
(s) 

Mapping 400 247 
Proposed method 

Coarse mesh 7860 8646 
8893 

General method Fine mesh 5880 25082 25082 
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