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Abstract — A new efficient mapping technique betweetthe
finite element method (FEM) solutions on two setsfaneshes,
one coarse and one fine, are proposed to reduce the
computation time in the study of optimal design prblems. In
the optimization process of the proposed algorithm,the
equation is required to be solved only on the coaesmesh and
the more accurate solution on the fine mesh is okted by
mapping. The proposed mapping technique is verifiedby
solving TEAM workshop problem No. 25 and the compution
time of the proposed method is only 35.5% of thataquired by
the general methods.

I. INTRODUCTION

Finite element method (FEM) is widely used in
electromagnetic device analysis and design [1]. él@w, it
takes one or two hours for one design using FEMraaost
optimization methods have to execute the objecttian
many thousands times before approaching the optimal
solution [2]. In some cases, the computation tirhé&BM
can be reduced by reducing of the number of elesriarthe
mesh at the expense of accuracy.

In optimization process, a change in the shapehef t
device being optimized requires different FEM siolus. It
is also noted that all the FEM solutions in theirj#ation
process have some common characteristics becastsarés
similar computation domain, the same boundary dmrdi
the same distribution of materials, even the saxoéagions
in most cases. Moreover, the FEM solution consistsvo
parts: one part is the main change, which is th& lo
frequency part in the FEM solution, and anothet Ethe
vibrations on the previous part, which is the higiguency
part in the FEM solution. The low frequency partvexy
dependent on the optimization parameters, whilehiige
frequency attached on the low frequency part is moe
low frequency part of the solution may be obtairveth
large intervals on the computational domain and Higgn
frequency part should be captured on small intsrval

In the proposed method, two set of meshgsand vy,
(with mesh sizeh << H) are constructed for the FEM
discretization at each optimization step. Usualig fine
meshv, can be chosen as the adaptive refinement on the
coarse meshy. The difference in the solutions between the
fine and coarse meshes are the high frequencyRecause
the high frequency part is less dependent on opaitiain
parameters, a mapping can be constructed to liakhiph
frequency part and the low frequency part whichthis
solution on the coarse mesh. The mapping can g $st
solutions of tens of FEM computation on the coarse fine
meshes with the optimization parameters randombseh.

The solution obtained after mapping is expectedb¢o
reasonably accurate as it is the FEM solution @nfihe
mesh. Since dino(;))<<dim(vy), the effort for solving the
problem on the coarse mesh is relatively simpleottmer
words, the mapping upholds the accuracy of the FEM
solution and at the same time reduces the computtthe.
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U Solution on fine mesh /

1 2 3
Fig.1. Difference between the solution on the a@angsh and fine mesh.

Il. MAPPING METHOD

The mapping method can be illustrated by a simple
example as shown in Fig. 1. The dotted line reprssthe
solution on the coarse mesh and the solid lineesemts the
solution on the fine mesh. Node 2 is in the finesimand
the adjacent nodes of node 2 on the coarse mesiodes 1
and 3. The solution on the fine mesh on nodelR and the
interpolation of the solution on the coarse meshadde 2 is
u,. The difference betweem, andy, is Au= u,— u;. Au can
be represented by the linear combinatioruofu;, w, Uy,
Uy’ and thecoordinate of node 2x. Au=au+b(u;+u,)
+c(uy’ +uy’) +dx, whereu,’ and W’ are the derivative of the
solution onu; andu,, respectively. The coefficieat, b, c, d
can be obtained by the least square fitting ontisolwf the
N-th time on the coarse mesh and fine mesh:

miny. (Au— au;—b(Usi+uz)—c(uy’ +uy’) —dx) ® 1)
whereAu; and ug;, Uy, Uy,Usi', Uy are the i-th time solution.
Once the coefficients are determined, the solutanthe
fine mesh can be obtained from the solution onciberse
meshu, = u+Au = u+ au+b(uy+uy)+c(u;’ +uy)+dx.

The representation afu includes the consideration of
the solution on the nodes itself, the solution tsnaidjacent
nodes, the derivative on the element on the caoaesh and
the position of the nodes together, which, indeedresents
the high frequency part of the solution.

The above mapping method can be extended direxctly t
2-dimension (2D) and three-dimension (3D) probleRu.
each node on the fine mesh, there exists one eteamdine
coarse mesh which contains it. The nodes on tleahesit
can be chosen as the adjacent of the node omheniésh.

In the mapping method, not all of the nodes onfithe
mesh requires mapping. Only the nodes which amgeel
with the objective function calculation require rpam.
This will reduce the number of the unknown coeéfits.
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The mapping algorithm requires a comparison between
the N solutions of the coarse mesh and fine mekh.i%h
time can be stated as:

1. Determine the shape of the devices by selecting the
optimization parameters randomly; generate both
coarse and fine meshes on the computation domain.

2. Solve the equation on the coarse and fine meslieg us
FEM.

3. Determine the set of nodes on the fine mas, {u.?,

U, , 4", which is related with the objective
function calculation and at the same time obtaia th

adjacent nodes for each nodesig{u? >, ..., 4.

4. Interpolate the solution on the coarse mesh totites
{url, u? ul, u} by interpolation and obtainu;.

5. Store the\u; on the nodesy!, u?, u’, ... , "} for the
calculation of the coefficients, b, c, d

After N times of FEM computation, the coefficiemtb, c, d
can be calculated by the storkd to realise the mapping.

I1l. INTERPOLATION FROMCOARSEMESH TOFINE MESH

Accurate interpolation of the solution from the =E&|
mesh to the fine mesh is an important proceduré¢hef
proposed method. The proposed interpolation is dase
the coarse FEM spacg. Given the basic function oy
is{¢} 4, and the solution &} L, , then if nodev(x y, 2 is in
the fine mesh, the ipterpolation value on node

) =y (£ % 3%y B (X y ) 2)
i=1

where €, n, ) is the reference coordinates. To determine
the reference coordinates of node the coarse mesh
element which contains it must be found accordimgts
global coordinatesx( y, 2. There are two procedures to
find the element. Firstly one must determine a skt
elements that probably contain the point accordmdhe
global coordinates of the node in the element. $éeond
step is to solve the following nonlinear algebraic
transformation equation by Newton iteration metho
each element in the set:

x=f(En,0,y=09(En 9, z=N&n, 3)
wheref, g, hare shape functions on the element.

The reference coordinate§, @, {) can be obtained in
the set of elements. I1E(n, ¢) is in the defined range, the
element that contains the node is found and tleegotation
values on the node can be calculated by (2).

IV. NUMERIC EXAMPLE

The proposed method is applied to TEAM workshop
problem No. 25 [4]. The goal of this problem isojatimize
the shape of a die mold to obtain the best perfocmaf
permanent magnets. Fig. 2(a) shows the model oflithe
mold with the electromagnet for the orientation tbe
magnetic axis of the magnetic powder. The die nisld
described by an internal circle of radik& and by an
external ellipse represented by LzandLs, as shown in Fig.
2(b). The objective functiow for the optimization problem

is given by:w =2[(Bm -B, )2 + (Byn -B,, )2]

where;n is the number of specified poinB;, andB, are
the computed values along the line &Bf; and By, are
specified ad,=1.5c0sf), B,;=1.5sin@) (T).

(@ (b)
Fig. 2. (a) Die mold with electromagnet. (b) @utation parameters

(@) (b)
Fig 3. (a) Coarse mesh (b) Fine mesh

Fig. 3 shows the coarse mesh with 519 nodes and the
fine mesh with 4216 nodes on the computation doroéin
one design. Using particle swarm optimization mdthbe
swarm size is set as 20 and the stop criteria fipestk by
two performance parametesBma= max(B,~B,)/By)< 3%
and AOmax = max(Pep—Osol) < 2. In the mapping
construction process, it takes about 247 second® t400
times of FEM computation on the coarse and finehmgs
(including nonlinear iteration and derivative caétion).

As is shown in Table |, it takes about 144 minuiesio
7860 times FEM computation by the proposed method,
while it takes about 418 minutes to do 5880 tim&MF
computation on the fine mesh using the conventional
method. For 3D problems which requires much maree i

to do FEM computation, the improvement by the pemub
method will be more significant.

TABLE |
COMPARISON OF THE COMPUTATION TIME
Method Calculation FEM Time Tge TOt?;)“me
Mapping 400 247
Proposed methoq—= = ce mesh 7860 8646 | o093
General method Fine mesh 5880 25082 25082
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